安全聚合是一个流行的保留联合学习中的流行协议,它允许模型聚合,而不会在清除中显示各个模型。另一方面,传统的安全聚合协议产生了显着的通信开销,这可能成为现实世界带宽限制应用中的主要瓶颈。在解决这一挑战方面,在这项工作中,我们提出了一种用于安全聚合的轻量级渐变稀疏框架,其中服务器从大量用户学习Sparsified本地模型更新的聚合,但不学习各个参数。我们的理论分析表明,所提出的框架可以显着降低安全聚合的通信开销,同时确保可比计算复杂性。我们进一步确定了由于稀疏因疏脂而在隐私和沟通效率之间的权衡。我们的实验表明,我们的框架在与传统安全聚合基准相比时,我们的框架将延长到7.8倍降低了高达7.8倍,同时加速了墙上时钟训练时间1.13x。
translated by 谷歌翻译
Compliance in actuation has been exploited to generate highly dynamic maneuvers such as throwing that take advantage of the potential energy stored in joint springs. However, the energy storage and release could not be well-timed yet. On the contrary, for multi-link systems, the natural system dynamics might even work against the actual goal. With the introduction of variable stiffness actuators, this problem has been partially addressed. With a suitable optimal control strategy, the approximate decoupling of the motor from the link can be achieved to maximize the energy transfer into the distal link prior to launch. However, such continuous stiffness variation is complex and typically leads to oscillatory swing-up motions instead of clear launch sequences. To circumvent this issue, we investigate decoupling for speed maximization with a dedicated novel actuator concept denoted Bi-Stiffness Actuation. With this, it is possible to fully decouple the link from the joint mechanism by a switch-and-hold clutch and simultaneously keep the elastic energy stored. We show that with this novel paradigm, it is not only possible to reach the same optimal performance as with power-equivalent variable stiffness actuation, but even directly control the energy transfer timing. This is a major step forward compared to previous optimal control approaches, which rely on optimizing the full time-series control input.
translated by 谷歌翻译
Tumor-stroma ratio (TSR) is a prognostic factor for many types of solid tumors. In this study, we propose a method for automated estimation of TSR from histopathological images of colorectal cancer. The method is based on convolutional neural networks which were trained to classify colorectal cancer tissue in hematoxylin-eosin stained samples into three classes: stroma, tumor and other. The models were trained using a data set that consists of 1343 whole slide images. Three different training setups were applied with a transfer learning approach using domain-specific data i.e. an external colorectal cancer histopathological data set. The three most accurate models were chosen as a classifier, TSR values were predicted and the results were compared to a visual TSR estimation made by a pathologist. The results suggest that classification accuracy does not improve when domain-specific data are used in the pre-training of the convolutional neural network models in the task at hand. Classification accuracy for stroma, tumor and other reached 96.1$\%$ on an independent test set. Among the three classes the best model gained the highest accuracy (99.3$\%$) for class tumor. When TSR was predicted with the best model, the correlation between the predicted values and values estimated by an experienced pathologist was 0.57. Further research is needed to study associations between computationally predicted TSR values and other clinicopathological factors of colorectal cancer and the overall survival of the patients.
translated by 谷歌翻译
The outburst of COVID-19 in late 2019 was the start of a health crisis that shook the world and took millions of lives in the ensuing years. Many governments and health officials failed to arrest the rapid circulation of infection in their communities. The long incubation period and the large proportion of asymptomatic cases made COVID-19 particularly elusive to track. However, wastewater monitoring soon became a promising data source in addition to conventional indicators such as confirmed daily cases, hospitalizations, and deaths. Despite the consensus on the effectiveness of wastewater viral load data, there is a lack of methodological approaches that leverage viral load to improve COVID-19 forecasting. This paper proposes using deep learning to automatically discover the relationship between daily confirmed cases and viral load data. We trained one Deep Temporal Convolutional Networks (DeepTCN) and one Temporal Fusion Transformer (TFT) model to build a global forecasting model. We supplement the daily confirmed cases with viral loads and other socio-economic factors as covariates to the models. Our results suggest that TFT outperforms DeepTCN and learns a better association between viral load and daily cases. We demonstrated that equipping the models with the viral load improves their forecasting performance significantly. Moreover, viral load is shown to be the second most predictive input, following the containment and health index. Our results reveal the feasibility of training a location-agnostic deep-learning model to capture the dynamics of infection diffusion when wastewater viral load data is provided.
translated by 谷歌翻译
Persuasion modeling is a key building block for conversational agents. Existing works in this direction are limited to analyzing textual dialogue corpus. We argue that visual signals also play an important role in understanding human persuasive behaviors. In this paper, we introduce the first multimodal dataset for modeling persuasion behaviors. Our dataset includes 199 dialogue transcriptions and videos captured in a multi-player social deduction game setting, 26,647 utterance level annotations of persuasion strategy, and game level annotations of deduction game outcomes. We provide extensive experiments to show how dialogue context and visual signals benefit persuasion strategy prediction. We also explore the generalization ability of language models for persuasion modeling and the role of persuasion strategies in predicting social deduction game outcomes. Our dataset, code, and models can be found at https://persuasion-deductiongame.socialai-data.org.
translated by 谷歌翻译
Statistical analysis and modeling is becoming increasingly popular for the world's leading organizations, especially for professional NBA teams. Sophisticated methods and models of sport talent evaluation have been created for this purpose. In this research, we present a different perspective from the dominant tactic of statistical data analysis. Based on a strategy that NBA teams have followed in the past, hiring human professionals, we deploy image analysis and Convolutional Neural Networks in an attempt to predict the career trajectory of newly drafted players from each draft class. We created a database consisting of about 1500 image data from players from every draft since 1990. We then divided the players into five different quality classes based on their expected NBA career. Next, we trained popular pre-trained image classification models in our data and conducted a series of tests in an attempt to create models that give reliable predictions of the rookie players' careers. The results of this study suggest that there is a potential correlation between facial characteristics and athletic talent, worth of further investigation.
translated by 谷歌翻译
In this paper a global reactive motion planning framework for robotic manipulators in complex dynamic environments is presented. In particular, the circular field predictions (CFP) planner from Becker et al. (2021) is extended to ensure obstacle avoidance of the whole structure of a robotic manipulator. Towards this end, a motion planning framework is developed that leverages global information about promising avoidance directions from arbitrary configuration space motion planners, resulting in improved global trajectories while reactively avoiding dynamic obstacles and decreasing the required computational power. The resulting motion planning framework is tested in multiple simulations with complex and dynamic obstacles and demonstrates great potential compared to existing motion planning approaches.
translated by 谷歌翻译
Importance: Social determinants of health (SDOH) are known to be associated with increased risk of suicidal behaviors, but few studies utilized SDOH from unstructured electronic health record (EHR) notes. Objective: To investigate associations between suicide and recent SDOH, identified using structured and unstructured data. Design: Nested case-control study. Setting: EHR data from the US Veterans Health Administration (VHA). Participants: 6,122,785 Veterans who received care in the US VHA between October 1, 2010, and September 30, 2015. Exposures: Occurrence of SDOH over a maximum span of two years compared with no occurrence of SDOH. Main Outcomes and Measures: Cases of suicide deaths were matched with 4 controls on birth year, cohort entry date, sex, and duration of follow-up. We developed an NLP system to extract SDOH from unstructured notes. Structured data, NLP on unstructured data, and combining them yielded seven, eight and nine SDOH respectively. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression. Results: In our cohort, 8,821 Veterans committed suicide during 23,725,382 person-years of follow-up (incidence rate 37.18 /100,000 person-years). Our cohort was mostly male (92.23%) and white (76.99%). Across the six common SDOH as covariates, NLP-extracted SDOH, on average, covered 84.38% of all SDOH occurrences. All SDOH, measured by structured data and NLP, were significantly associated with increased risk of suicide. The SDOH with the largest effects was legal problems (aOR=2.67, 95% CI=2.46-2.89), followed by violence (aOR=2.26, 95% CI=2.11-2.43). NLP-extracted and structured SDOH were also associated with suicide. Conclusions and Relevance: NLP-extracted SDOH were always significantly associated with increased risk of suicide among Veterans, suggesting the potential of NLP in public health studies.
translated by 谷歌翻译
This paper presents the OPUS ecosystem with a focus on the development of open machine translation models and tools, and their integration into end-user applications, development platforms and professional workflows. We discuss our on-going mission of increasing language coverage and translation quality, and also describe on-going work on the development of modular translation models and speed-optimized compact solutions for real-time translation on regular desktops and small devices.
translated by 谷歌翻译
Quantum machine learning techniques are commonly considered one of the most promising candidates for demonstrating practical quantum advantage. In particular, quantum kernel methods have been demonstrated to be able to learn certain classically intractable functions efficiently if the kernel is well-aligned with the target function. In the more general case, quantum kernels are known to suffer from exponential "flattening" of the spectrum as the number of qubits grows, preventing generalization and necessitating the control of the inductive bias by hyperparameters. We show that the general-purpose hyperparameter tuning techniques proposed to improve the generalization of quantum kernels lead to the kernel becoming well-approximated by a classical kernel, removing the possibility of quantum advantage. We provide extensive numerical evidence for this phenomenon utilizing multiple previously studied quantum feature maps and both synthetic and real data. Our results show that unless novel techniques are developed to control the inductive bias of quantum kernels, they are unlikely to provide a quantum advantage on classical data.
translated by 谷歌翻译